Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ann N Y Acad Sci ; 1521(1): 32-45, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228474

ABSTRACT

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.


Subject(s)
Influenza, Human , Pandemics , Humans , Influenza, Human/epidemiology
2.
Sci Transl Med ; 13(583)2021 03 03.
Article in English | MEDLINE | ID: covidwho-1117652

ABSTRACT

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Primates/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/chemistry , Antigen-Antibody Complex/chemistry , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/chemistry , COVID-19 , Ferritins/chemistry , Ferritins/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/immunology , Influenza, Human/virology , Macaca fascicularis , Models, Molecular , Nanoparticles/chemistry , Pandemics , Primates/virology , Protein Structure, Quaternary , SARS-CoV-2 , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL